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The model penetrative-convection problem of ice-water convection is considered. 
Analytical progress is made through the remarkable simplification that horizontally 
long convection cells are preferred when the heat flux is fixed on the boundaries 
(Chapman & Proctor 1980). However, a linear analysis shows that long horizontal 
scales are preferred only when the convection is mildly penetrative (i.e. the 
overlying layer of stable fluid is not deep). A straightforward nonlinear asymptotic 
analysis of the convection only provides the relatively uninteresting information that 
the convection is subcritical. Using the technique of reconstitution (Roberts 1985) 
to provide higher-order corrections to the asymptotic theory, flow properties a t  larger 
amplitudes are calculated and predictions about the extent of the subcriticality are 
made. 

1. Introduction 
In the atmosphere solar radiation can heat the air near the surface of the Earth 

or ocean and generate a gravitationally unstable air layer beneath a stably stratified 
environment. When convective motion occurs in the lower layer, i t  mixes with the 
overlying stable air, and so the convection penetrates into the stable fluid (Warner 
& Telford 1967; Deardorff, Willis & Lilley 1969; Willis & Deardorff 1974). The 
reciprocal situation of convection penetrating downwards from above can occur in 
lakes and oceans (Whitehead & Chen 1970; Farmer 1975), though in the ocean the 
upper mixed layer is typically formed by turbulence generated by surface wind 
(Turner 1973, chap. 9). These examples of what we call penetrative convection are 
principally unsteady and transient. 

Statistically stationary penetrative convection may occur in stars, where large 
changes in the mean free path of photons cause large changes in the diffusion of heat 
with temperature, which in turn allows convective motion to be confined between 
stable regions of the fluid (Veronis 1963). Another example of stationary penetrative 
convection, much studied because of the ease of performing laboratory experiments, 
and the one investigated here, is that of convection in water of temperature near 4 "C 
(Townsend 1964; Myrup et al. 1970; Tankin & Farhadieh 1971 ; Adrian 1975). Because 
pure water has a density maximum at 4 OC, a layer of water cooled from below (by 
ice for example) will form an unstable layer (below the 4 "C isotherm) underneath 
a stably stratified region. A similar density maximum occurs in liquid helium just 
above the superfluid transition temperature (Walden & Ahlers 1981). 

t Permanent address: Department of Applied Mathematics, University of Adelaide, G.P.O. 
Box 498, Adelaide, South Australia 5001. 
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Theoretical work in penetrative convection has been largely confined to linear 
calculations of the critical Rayleigh number a t  which small-amplitude disturbances 
to  the conductive state grow (Veronis 1963 ; Whitehead & Chen 1970), two-dimensional 
numerical simulations of ice-water convection using the full equations (Moore & 
Weiss 1973) and in the mean-field approximation (Musman 1968), and to  proposing 
one-dimensional modes a t  high Rayleigh number (Moore & Weiss 1973 ; Manton 1975; 
Denton & Wood 1981 ; Cushman-Roisin 1982). A paper by Mollendorff, Johnson & 
Gebhart (1981) investigates self-similar plume flows in pure and salty water near its 
density maximum. In contrast with strictly Boussinesq convection, very little 
analytical analysis has been done for Rayleigh numbers near the onset of convection. 
This is principally because the bifurcation is subcritical and convection of finite 
amplitude can occur for Rayleigh numbers less than that predicted by linear theory; 
a small-amplitude analysis can only predict the behaviour on an unstable branch of 
solutions (Veronis 1963). It is this regime near the onset of linear and finite-amplitude 
penetrative convection that we aim to analyse through the remarkable analytic 
simplifications that ensue from specifying the heat flux on the boundaries rather than 
fixing the temperature. 

I n  geophysical applications there is no assurance that the commonly used 
boundary condition of fixed temperature is appropriate. Indeed, when the sun heats 
the air next to the ocean or ground (if the ground happens to  be spatially uniform) 
a fixed-heat-flux boundary condition is much more appropriate. Mantle convection 
occurs between poorly conducting boundaries, which may also be modelled by 
fixed-heat-flux boundary conditions (Chapman, Childress & Proctor 1980). With 
these last few applications in mind, we adopt fixed-flux boundary conditions and 
consider the model problem of convection in water a t  temperatures near that of the 
density maximum (figure 1). 

The analytic simplification resulting from using this boundary condition is that, 
within the strict Boussinesq assumption, the motion takes place over a long 
horizontal scale (Nield 1975). Thus the vertical structure can be explicitly calculated 
while leaving the evolution of the horizontal structure to  be governed by a derived 
partial differential equation (Chapman & Proctor 1980; Proctor 1981). I n  $3  we 
present the linear analysis of fixed-flux ice-water convection taking place in two 
dimensions between two rigid boundaries as sketched in figure 1.  The vertical location 
of the upper boundary is left arbitrary so that we can examine problems ranging from 
the case of a nearly linear, entirely unstable layer to the case of an arbitrarily large 
stable layer overlying the unstable one. We deduce from the linear analysis that 
long-horizontal-scale convection can only occur if the stable layer is less than about 
65 yo of the thickness of the unstable layer. For thicker stable layers convection occurs 
preferentially on a finite lengthscale; and we conjecture that this is qualitatively true 
for more general penetrative convection. Our nonlinear analysis is thus restricted to 
these relatively shallow layers where long horizontal scales are preferred. 

The nonlinear investigation follows directly from the analyses of Chapman & 
Proctor (1980) and Depassier & Spiegel (1982) (henceforth denoted by CP and DS 
respectively). C P  considered a strictly Boussinesq fluid and established the evolution 
of the convection by making a separation-of-scales assumption. DS considered the 
convection in a fluid with weakly temperature-dependent properties. Both C P  and 
DS did not need to assume a small amplitude in their expansions. However, because 
the nonlinearity of the density dependence in ice-water convection is so strong, the 
derivation (in $4) of an equation describing the evolution of the horizontal structure 
is based upon a small-amplitude assumption. Although we elucidate further details 
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of the small-amplitude (but nonlinear) solutions to  DS’s generic evolution equation 
(1  . l ) ,  this small-amplitude restriction is disappointing. 

In $5 the technique of reconstitution, proposed by Spiegel (1981) (see Roberts 
1985), is used to  modify the evolution equation and make it describe the evolution 
more accurately at finite amplitudes (for simplicity we restrict ourselves to steady 
solutions). From CP’s and DS’s work at least some of the terms that need 
incorporation into the evolution equation are known, and we interpret each term as 
some physical process in the problem. As information from higher orders in the 
expansion is included, we derive a reconstituted evolution equation that is of similar 
form to the equations of CP and DS. This derivation of an equation based on a 
small-amplitude expansion but similar to the equations resulting from an expansion 
with an order-1 assumption about the amplitude is a vindication of the technique 
of reconstitution. The differences between the equations lie in the variable coefficients 
of the reconstituted equations, which cater for the detailed differences between the 
problems. 

2. Equations of motion 
Consider the idealized situation (figure 1)  where a fluid, infinite in horizontal 

extent, is confined between two plates upon which fixed-heat-flux boundary condi- 
tions are applied. The boundary conditions on the velocity at the two plates will be 
those corresponding to those of a no-slip surface, though other cases of interest are 
intermittently commented on. 

The idealized equation of state for the fluid will be taken to be 

p = ~ , [ ~ - U ( T - T * ) ~ ] ,  (2.1) 

where po, a and T* are absolute constants of the fluid; in water the values 
po = 1 g/cmS, a = 8 x K-2 and T *  = 3.98 “C give a reasonably accurate pre- 
scription. Also let 

T =  T * + B ( Z - d ) + e ( x ,  y, Z, t ) ,  

where T* +/3(z-d) is the static temperature distribution and 0 is the deviation from 
this due to  the convective motion. Thus z = d corresponds to the vertical position 
of the static density maximum. Hence for 0 < z < d the fluid is gravitationally 
unstable, while for d < z < h i t  is stably stratified. Using the above forms for the 
density dependence and the background temperature field, non-dimensionalizing 
quantities with respect to  the reference length d ,  the reference time d2/K and the 
reference temperature /Id, we write the two-dimensional Boussinesq equations of 
motion as 

(2.3) 

0, = @ = @, = 0 on z = 0 and h ,  (2.5) 

R = 2 a g P d 5 / ~ v ,  (2.6) 

where Pr = v / k  is the Prandtl number,t the Rayleigh number is 

t Throughout this work we implicitly assume that the Prandtl number is constant, and in any 
specific examples we will take it to be 12. This value is roughly correct for water near freezing, 
and any deviations are not likely to be significant aa there is only a weak dependence upon the 
Prandtl number. 
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FIQURE 1. Conductive state in ice-water convection. 

and the fluid velocity is given by 

u = (-$z, 0, $J. 

Variable non-integral subscripts are used here, and extensively later on, to denote 
partial differentiation. The difference between these equations and those for fluids 
with a linear density dependence on temperature lies only in the buoyancy-gradient 
term of the vorticity equation, here quadratic in 8 and dependent upon the vertical 
coordinate z. 

The above Rayleigh number may be interpreted as being based upon the density 
gradient at the lower boundary (which is 2apd) and the height of the density 
maximum. I n  penetrative convection no simple definition of a Rayleigh number has 
yet been developed that is useful in comparing widely different problems. A suitable 
definition is made even more difficult because finite-amplitude penetrative convection 
can occur a t  Rayleigh numbers below the critical Rayleigh number calculated from 
linear theory. 

Observe that, by integrating the heat equation over the fluid domain and using the 
boundary conditions, we can show that ( O ) ,  = 0, where ( ) denotes an average over 
the entire fluid. Thus (8 )  must be constant, and without loss of generality we take 
it to be zero. Any other choice would be equivalent to  solving a problem where the 
mean static density maximum occurs a t  a position slightly different from that 
specified. Thus the requirement (8) = 0 provides an extra condition to make the 
solutions of (2.3)-(2.5) unique. 

3. Linear stability analysis 
For all values of the parameters R,  h and Pr there exists the exact solution 

0 = $ = 0 for all x, z ,  t 

to the set of equations (2.3)-(2.5). This solution is one of no motion and linear 
temperature variation. However, for some values of the parameters this solution is 
unstable to  small disturbances. The aim of this section is to  describe the critical values 
of the parameters at which the above simple solution becomes unstable. 

We assume that the solutions of the linearized equations have the form 

8 = Re { 8 ( z )  exp [st+ iax]}, 

$ = Re{ia!?'(z) exp[st+iaz]}, 
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so that the disturbance has an assumed horizontal wavenumber a and some temporal 
growth rate s. The eigenvalue problem for s(R, a ,  h, Pr) is thus 

( D 2 - a 2 - s ) 0  = -a2Y, 

DO = Y = DY = 0 o n z  = 0 and h, 

where D denotes the operator d/dz. The condition that determines the values of the 
parameters for marginal stability is that Re [ s ]  = 0. However, in many convection 
problems it  may be proved that Re [s]  = 0 can only occur if Im [s] = 0 also, a very 
useful simplifying result. For the eigenvalue problem (3.1) there is as yet no available 
proof for this ‘principle of exchange of stabilities’.? For our purposes we assume that 
the principle holds (this assumption has been confirmed by a number of numerical 
solutions). The eigenvalue problem then reduces t o  finding the critical Rayleigh 
number R,(a, h) given by the smallest eigenvalue of 

(D2-a2)e = -u2YY, 

( D 2 - ~ 2 ) 2  Y =  R,(l-Z)O, 

DO= Y = D Y = O  o n z = O a n d h .  

Because of the factor linear in z the general solutions of the above differential 
equations (i.e. allowing arbitrary boundary conditions) provide canonical functions 
for many linear penetrative convection problems in the same way that the Airy 
functions are canonical functions for second-order ordinary differential equations 
with a turning point. This is discussed further by Roberts (1981), who extended the 
work of Granoff & Bleistein (1972) by defining, in terms of an integral, six linearly 
independent real-valued functions that can be used to solve the general linear 
marginal-stability problem. 

The reason for using a fixed-heat-flux boundary condition is that  the critical 
Rayleigh number achieves its minimum for very long horizontal wavelengths. Thus 
the critical wavenumber for the onset of convection is effectively zero. For historical 
details of this result the reader is referred to the discussion in CP. We hence get a 
good approximation to the critical Rayleigh number curve at the critical wavenumber 
through solving (3.2) by constructing perturbation expansion about zero horizontal 
wavenumber. 

Because of the symmetry inherent in the problem, the horizontal wavenumber only 
occurs in the form u2, and hence we substitute the expansions 

(3.3) 1 R, = R,, + a2RC2 + a4Rc4 + . . . , 
e = eo(2)+a2e2(z)+u4e4(z)+ ..., 
Y = Yo(z)+a2Y2(z)+a4Y4(z)+ ... 

into (3.2). Grouping like powers of a2, we obtain a sequence of solvable equations. 

t In penetrative convection the most general relevant proof so far is due to Spiegel (see Veronis 
1963), and applies to arbitrary vertical temperature or density distributions, but is limited to 
constant-temperature stress-free boundaries. Davis ( 1  969) has presented a method that could 
extend this proof to more general boundary conditions, but apparently the details have not yet 
been worked out. 
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FIQURE 2. The first approximation to  the vertical structure of the velocity field for different layer 
depths h. The horizontal velocities are given by -!Pi times a function of x, while the vertical 
velocities are given by Yo times the derivative of the same function of x. 

v6(4 

The zeroth-order solution is simply 

e, = I ,  

Yo = R,, 2 ( h -  z ) ~  ( 5 - % - ~ ) / 5 ! ,  

where R,, is determined by a solvability condition at the next order and is 

The vertical structure of the fluid velocity is easily derived from Y,(z) (see figure 2). 
There are a number of interesting aspects of this leading-order solution. The critical 
Rayleigh number has the correct asymptotic form as the layer depth h becomes small, 
a limit in which this problem reduces to one of the cases discussed by CP. For 5 < h < 2 
there exists a countercell in the region (5  - 2 h < z < h of the stably stratified fluid 
(figure 2). Also R,,++ co as h+ 2- and is negative for h > 2. The interpretation of 
this singularity is simply that our assumption of preferred long horizontal scales is 
too naive. Here convection on a long horizontal scale is inhibited by having to set 
in motion the overlying stably stratified fluid, and for h 2 2 an infinitely large 
Rayleigh number is needed. Thus long horizontal scales are only feasible for h < 2. 
For larger h the motion must have a finite horizontal peri0dicity.t 

t The negative Rayleigh number for h > 2 may be interpreted as describing the situation when 
a, the quadratic thermal-expansion coefficient, is negative, in which case the above solution 
describes the inverse situation of a gravitationally unstable fluid layer lying above a thinner stable 
layer. 
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Calculating quantities of the next two orders, the following formulae for R,, and R,, 
are obtained : 

1 30(211h2-884h+884) 
Re2 = 1001h2(1-$)3 ’ 

219091383h4-l713638342h3+5073065582h2-6718854480h+3359427240 
Rc4 = 2539170584(1 -4h)5 

(3.5) 

The above coefficients have a simple behaviour. R,, is positive for 0 < h < 1.6492 and 
negative for 1.6492 < h < 2 .  Thus the preferred horizontal scale, as determined by 
the minimum of the Rayleigh number, occurs at zero wavenumber only for 
h < 1.6492; as h increases across this value there is a bifurcation of the preferred 
wavenumber to  non-zero values. This bifurcation occurs at a layer depth only 0.017 
less than the depth at which a countercell first appears. R,, is positive for all 
0 < h < 2 ;  in particular i t  is positive for h near 1.6492. Thus i t  is unlikely for there 
to be two different local minima in the Rayleigh-number curve (such duplicity would 
make the dynamics for layer depths near 1.6492 much more complicated). The above 
qualitative conclusions are fully supported by numerical solutions of (3.2) (figure 3) .  
On the left-hand side of figure 3 we see that the presence of a stable layer above an 
unstable region can have a stabilizing influence on very small-amplitude convection. 
This effect has also been reported by Whitehead & Chen (1970). 

FIQURE 3. The critical Rayleigh number at which the no-motion solution loses its stability, as a 
function of wavenumber a, for different layer depths h. The curves are plotted using Pad6 
approximants to sum a 24th-order expansion in u2. 
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4. Weakly nonlinear analysis 
We now turn to the behaviour of nonlinear disturbances for Rayleigh numbers near 

critical. In particular we are interested in whether finite-amplitude convection can 
take place for Rayleigh numbers less than that given by the linear analysis. For 
tractability we make the assumption that the convection occurs on a long horizontal 
scale, which, as $3  shows, restricts us to considering layer depths h less than 2. A 
further restriction is that  our nonlinear analysis will only refer to  a preferred 
convective mode if h < 1.6492 ; this restriction is implicit in the rest of this work unless 
otherwise stated. The following should be compared with the work of DS, who, in 
a similar manner, treat the effects on convective motion of small departures from the 
strict Boussinesq approximation. 

The following derivation of the equations governing the nonlinear convective 
behaviour puts flesh onto the skeletal scheme established in the linear analysis. 
Assuming that the motion takes place over long horizontal scales and develops over 
a long time, we introduce the scaling 

g = €2, 7 = € 4 t ,  (4.1) 

where E is a small parameter of the same magnitude as the horizontal wavenumber. 
We then expand the variables in powers of c2, namely 

(4.2) 

$ ( x ,  z ,  t )  = E ~ $ ~ ( E ,  z , 7 )  + E ~ @ ~ ( E ,  z , ~ )  + s7@,,(E, z , 7 )  + . . . . 
The leading order of 0 and @, respectively e2 and 8, is two orders of E smaller than 
that used by CP  or DS. This scaling is dictated by the presence of the strong nonlinear 
dependence of buoyancy on the temperature (see (2.1)). This nonlinearity has 
profound consequences in the nature of the nonlinear convection and the methods 
by which it can be analysed, the first consequence being the above small-amplitude 
scaling. 

Substituting the expansion (4.2) into the governing equations (2.4) and equating 
like powers of E ,  we obtain the following sequence of equations: 

1 R = R o + s 2 R 2 + ~ 4 R 4 + . . . ,  

e(x,  2, t )  = €2eo(t, z, 7 ) + E 4 e 2 ( ~ ,  z , T )  + E 6 e 4 ( g ,  z , 7 ) +  ..., 

$,, = D$fl = 0 on z = Oand h,  i (4.4) 
where quantities with negative or odd subscripts are defined to be zero. By integrating 
(4.3) over the layer depth, we find that the boundary conditions ensure that the 
left-hand side is zero. Hence the solvability condition 

(4.5) 

must be satisfied for all values of n for which 8, and @, are known. 
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A t  zeroth order the right-hand side of (4.3) is zero, and hence 

8 0  = f o ( E ,  7 ) ,  (4.6) 

wheref, is, as yet, some arbitrary function. Our aim here is to derive an evolution 
equation forf,. Equation (4.4) can then be solved to give 

(4.7) 

where R, is not yet determined. The above two solutions describe the leading-order 
structure of the convection. The vertical structures are given explicitly as polynomials 
in z (the same as those for the linear problem), while the horizontal and temporal 
structure is given by the unknownf,(& 7 ) .  

A t  the next order we have a solvability condition on f, and R, which must be 
satisfied before O2 can be found. It requires that either fos is zero, which leads to trivial 
solutions and is thus rejected, or that 

@o = dlo(z)fog =fos R, ~ ~ ( h - 2 ) ~  (5 - 2h-~) /5! ,  

C ? l  
U: 

R, = Rc, = 
h4(l -ih) ' 

We can then solve (4.3) and (4.4) for 8, and @2 respectively as functions of fo, z 
and h. However, there is a degree of freedom in the solution for 02. We absorb this here, 
and correspondingly at higher order, by adding the as yet arbitrary term f,(E, 7 )  to 
the forced terms and by requiring that the coefficients of the forced terms integrate 
to zero over the depth of the fluid layer. This is done to ensure that E2fo+e4f2 is 
precisely the vertically averaged temperature perturbation at  the point ( ( , 7 ) .  

The solvability condition ((4.5) with n = 2) then gives the equation that fo must 

where 
Rc2 1 

, ~ ( h )  = -, h(h) = - 
R 
Rco Rco l - i h '  

r =2 

This equation is identical with the leading-order equation resulting from substituting 
the small-amplitude expansions (4.2) and (4.1) into DS's equation ( 1 . 1 ) .  The 
analysis in this section thus applies equally well to the small-amplitude small- 
wavenumber limit of their equation, and so extends their analysis. 

Observe that the coefficient of the highest derivative, ~ ( h ) ,  vanishes at the critical 
depth h = 1.6492. This implies that (4.8) is not uniformly valid: in particular it is 
not an appropriate equation for h near 1.6492. This non-uniformity is compounded 
in the more refined approximation discussed in $5 .  

It is convenient to write (4.8) in terms of unscaled variables. Introducing 

R 
r = - - 1 =  C2T2, F(z ,  t)  = a l ( E ,  7 ) ,  (4.9) 

Rco 
we can write (4.8) as the equivalent evolution equation 

4 + Kl?,.,.,.,. + TFzs- h(FF,), = 0, (4.10) 

To this order we find that the temperature field, given by the rescaling of (4.6), 

(4.11) 

which is the form used in the rest of this section. 

is just 

The velocity potential is given by the rescaling of (4.7) to be 

e(z, z ,  t )  = qz, t) .  

$@, z, t )  = F,R,,d,,(z). (4.12) 
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Hence the horizontal structure of the horizontal velocity (u = - * z )  is given by Fz, 
while that of the vertical velocity (w = $,) is given by Fxx. 

So far we have ignored the necessity to  provide boundary conditions for this 
evolution equation ; these come from considering vertical boundaries a t  large values 
of x. There are two main considerations. Having essentially described the z-dependence 
in the solution, we can now only apply boundary conditions that are consistent with 
the assumed vertical structure given implicitly in (4.6) and (4.7) (the most obvious 
constraint is that  the original boundary conditions have to be applied on a vertical 
Iine, x = constant). The other consideration is that  (4.10) is a fourth-order differential 
equation in space, while the original system was sixth-order. Thus the boundary 
conditions must also be consistent with the lower-order equation. Following CP and 
DS, we choose boundary conditions appropriate to  a periodic cellular motion with 
a horizontal period of 27tla (i.e. the horizontal wavenumber is a) .  Thus we apply 

7t 

U 
Fx = F,,, = 0 on x = +-, (4.13) 

but because of symmetry we need only consider convection in a half-cell, and we apply 
this condition a t  x = 0 and x = n/a. These boundary conditions correspond to those 
of a box with perfectly insulating stress-free vertical b0undaries.t For the more 
accurate evolution equations discussed in §§5 and 6, similar reasoning applies, and 
we find that it is appropriate to  use (4.13) throughout this paper. 

The uniqueness condition (e(x, z, t ) )  = 0 also needs to be considered. To leading 
order 8 = F,  and so this condition simply transforms to 

P =  0, (4.14) 

where the overbar denotes the horizontal average. 
To aid interpretation of the results, we define a measure of the amplitude of the 

convection. The amplitude is defined to be the difference between the hot and cold 
extremes of the vertically averaged temperature perturbation, which is adequately 
described by 

A = F -, t -F(O,  t ) .  (4.15) (: 1 
We can now investigate the solutions of the evolution equation (4.10). 

It is possible to find a steady analytic solution of (4.10) in terms of the Jacobian 
elliptic functions (see Abramowitz & Stegun, chaps 16 and 17). Substituting the form 

(4.16) 

into (4.10) and requiring F =  0, we find, parametrically in the elliptic function 
parameter m, that .(figure 4) 

r = ~ ~ ~ { l + m - 3 ( 1 - ~ ) } ( ~ ~ ,  

A =3a2(1-$h)~m - , 

O* = 3 a 2 ( 1 - $ ) ~  m- 1--  

(232 
{ ( $I(Y2j 

I (4.17) 

t An insulating no-slip vertical boundary can be specified to this order of accuracy by requiring 
that F, = F,, = 0. 
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FIGURE 4. A half-wavelength of the structure of weakly nonlinear convection for depth h = 1.2, 
wavenumber a = 0.5 and parameter m = 0.996, for which the amplitude A = 0.0993 and the scaled 
Rayleigh number r = 0.0229: (a) the horizontal structure of the temperature perturbation; (b) the 
horizontal structure of the horizontal velocities; (c) the horizontal structure of the vertical 
velocities; (d )  contours of the temperature field with contour interval A T  = 0.1 (the isotherm of 
the density maxima T = T* is shown by ...); (e) streamlines plotted at an interval of A$ = 0.005. 
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A 

R , = --1 
Rco 

FIQURE 5. Amplitude versus Rayleigh-number curves at fixed wavenumbers for layer 
depth h = 1.0, from equation (4.17) of the weakly nonlinear analysis. 

where K(m)  and E(m) are the complete elliptic integrals of the first and second kind 
respectively. 

Since the preferred convective mode corresponds to zero wavenumber, consider the 
limit of (4.16) and (4.17) as the wavenumber tends to  zero keeping aK(rn) constant 
(hence m tends to 1).  The above solution then reduces to 

F=3(1-+h)rsech2 2 -- [ ( 4YI' 
(4.18) 

Using this and (4.17), we have plotted the zeroth-order approximation to the 
amplitude versus Rayleigh-number curves for fixed wavenumber on figure 5.  
Inspection of the figure suggests that  at a fixed finite amplitude the Rayleigh number 
depends linearly on the wavenumber. If the asymptotic limit of the solution (4.17) 
as m tends to  1 is taken (the hyperbolic limit) keeping the amplitude A fixed, we find 
the approximate relation 

r = -  3(1-4jh) A { 1 - [ 3( 1 -+h) :I(:) 1 a I + 0 g)}. (4.19) 

This linear dependence upon the wavenumber is surprising in view of the symmetry 
of the problem, and no physical explanation can be offered at present. 

The structure of the nonlinear solutions (see figure 4) may be easily understood. 
A wide ascending cold plume will create a more unstable density gradient in its centre, 
which will then tend to  accelerate the ascending fluid further. On the other hand, 
a wide descending region of warm fluid creates a local density distribution that is 
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more stable and inhibits the motion. Thus the downward motion is confined to the 
sides of the upward plume. The effects become much more marked at higher 
amplitudes, and the result is a horizontal contraction of the region of effective 
convection. This contraction can most easily be seen from the zero-wavenumber 
solution (4.18) which indicates a horizontal lengthscale of roughly (K/A)i.  

The result that the motion occurs predominantly in localized upward jets agrees 
qualitatively with observations of three-dimensional penetrative-convection experi- 
ments (see Whitehead & Chen 1970). Also, the above solutions show a pitfall in the 
mean-field approximation as used by Musman (1968). The most important nonlinear 
effect, at least for small amplitudes, is the 88, buoyancy term in (2.4). This term causes 
a marked asymmetry between the upward and downward motions, in contrast with 
the results of the mean-field approximation, which, ignoring products of fluctuating 
quantities, predicts a symmetrical motion. 

There are some problems with the above solution. As a small-amplitude analysis 
shows (Roberts 1982), this subcritical solution is an unstable branch of steady 
solutions, and so cannot be physically realized. 

We would like to be able to calculate solutions of large enough amplitude so that, 
for example, estimates can be made of the extent of the subcriticality of 
finite-amplitude convection. The main problem lies in (4. lo), which, because of the 
initial assumption of small-amplitude motion (see (4.2)), only represents a balance 
between dissipation and buoyancy forcing. This may readily be seen by rewriting 
(4.10) in the form 

h4 
4 = { - KF,,,, + r”,,} + W (  - 1 +ih + F )  FJ,, 

where, correct to this order of accuracy, we have written h = hR/R,, (= h4R/6!) .  The 
first term on the right-hand side simply represents a vertically integrated dissipation, 
while the second term is recognized from (2.4) as the vertically integrated buoyancy 
term. In contrast, the work of CP  and DS contains other nonlinear terms. The problem 
of correcting (4.10) by appropriately introducing extra terms, like those found by CP 
and DS, so as to produce an equation valid for larger amplitudes is addressed in $5.  

5. The second reconstituted evolution equation 
For simplicity our attention is restricted to steady equations and their solution, 

though for much of the time they are unstable. The unsteady equations and their 
solutions await further investigation. In this section we consider the reconstituted 
equation that results from including information contained in the solution of the 
expansion carried out to the next two highest orders. The first reconstituted equation, 
which results from including information from the next order into the evolution 
equation (4.10), is discussed in detail by Roberts (1982). Briefly, the equation does 
not include a term found by CP  and DS, and the solutions (although asymptotically 
more accurate) are not a significant improvement over the weakly nonlinear 
solutions. 

The details of the derivation, via reconstitution (Roberts 1985), of the following 
equations (5.1), (5.3) and (5.4) may be found in Roberts (1982). Reconstitution 
modifies the evolution equation (4.10) to 

B,Fzsss+Bz~*,+B)(FF,),+Bp(F,F,,),+B,(FF,,,),+B,(F,), 

+ B , W ,  F,,),+ BSPF,,,),+B,(F,, F,,,), = 0, (5.1 1 
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where the Rayleigh- and Prandtl-number dependence is 

B ,  = bl,+ b,, r +  b,, r2 ,  B ,  = b,,r, 

B ,  = - ( i + r ) ,  B,  = 

B, = b,,+b,,r, B ,  = be,+- ,  be1 
Pr 

B ,  = b, ,+- ,  b71 B, = b,,, B ,  = b, ,+- .  b01 
Pr Pr 

The coefficients b,, c&), d,,(z) that  appear in this section are fairly complicated and 
are recorded by Roberts (1982). 

Before discussing this correctedevolutionequation, appropriately accurate formulae 
for the temperature variations and stream function are 

(5.3) 0(z, Z )  = F + C, F,, + C,  FF,, + C, F”, + O ( 8 )  

D, = d,,, D, = d,,+-. d51 
Pr 

Boundary conditions for the evolution equation (5.1) also need to be specified. 
Inspecting (5.3) and (5.4), it  is apparent that  the boundary condition (4.13) is 
appropriate here for similar reasons to  those outlined in $4. 

There are several interesting features of the evolution equation (5.1). If time 
dependence is retained throughout the derivation of this equation, then, as is shown 
by Roberts (1981), terms of the form F,, F,,, and others appear in the reconstituted 
equation. Since (5.1) is immediately once-integrable, then the condition 5 = 0 will 
hold. This in turn guarantees that (O), = 0, which seems desirable as we know it must 
hold for exact solutions of the full problem. The uniqueness condition for the full 
problem (0) = 0, is thus transformed to F = 0 for the reconstituted equation (if the 
reconstituted equation is not once-integrable, then in general we find that i t  is 
inconsistent to require that F = 0). 

As in $4, the terms in (5.1) have interesting physical interpretations; writing the 
equation as 

{ - [ ( B , + B ,  F + B , F )  ~ x x x l x + ~ , o ~ x x l + ~ ~ ~  + r )  (-bb,,+F) Fxlx 
-{(B4+B7F)FxFxx}x-{Be(F3,)x}-{Bo(Fx3:Fxxx)x} = 0, (5.6) 

then the second term represents the vertically integrated buoyancy effects. 
The first term is a dissipation term, but the coefficient of diffusion B ,  + B, F +  B ,  F2 

has a quadratic dependence upon the vertically integrated temperature variation and 
is independent of the Prandtl number. The three terms of the coefficient appear to 
be the first three terms in the Taylor series of some (unknown) function. 

Since u x F, and w x F,., the third term represents vertically averaged advection 
of vorticity produced by horizontal shear and the weak temperature structure. 
Comparing the weakly nonlinear equation (4.10) and the reconstituted equation (5.6) 
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with CP's evolution equation (4.2)' we see that reconstitution has introduced into 
the evolution equation the advection term (F, F,,),, which appears in CP's equation 
whenever there are vertical asymmetries. It does not appear in DS's evolution 
equation, as there the asymmetry due to temperature-dependent material properties 
is too weak to affect the principal dynamics. 

The fourth term is the last of the terms in the evolution equations of CP and DS 
to appear in our reconstituted equations. It is an important term, as it is the only 
nonlinear term to appear in the symmetric case examined in 5 1 by CP. W. R. Young 
(private communication) suggests that this term should be interpreted as an 
enhanced shear-dispersion term. Taylor (1953) argued that in a channel with a 
non-uniformly distributed contaminant (e.g. heat), a shear flow (with a typical 
velocity u, say) produces an enhanced longitudinal diffusion of the contaminant with 
a diffusion coefficient proportional to u2. But here u x F,, and so an enhanced 
diffusion term (u2FZ), just becomes the term (P,), found in (5.6). 

There are a plethora of interpretations of the last term in (5.6), all of little 
importance. This term does not appear in the analyses of CP and DS in any form. 
Its main effect here is to make the mathematical analysis more difficult without much 
change in the structure of the solutions. 

We can now treat the reconstituted evolution equation (5.1) just like a full 
convection problem. The small-amplitude analysis of the reconstituted evolution 
equation (5.1) is straightforward and, we only present the results. The critical scaled 
Rayleigh number is given implicitly by 

For small wavenumbers this formula gives the critical-Rayleigh-number curve to the 
full problem to within an error of order as. A t  large wavenumbers (where rc tends 
to a constant) and for heights near 1.6492 the agreement is poor, which is respectively 
due to the inappropriate form for B, given in (5.2) and to the previously mentioned 
unsuitability of a fourth-order differential equation to describe the solutions for h near 
1.6492. 

Extending such a small-amplitude expansion to higher order, we can find the initial 
slope of the amplitudeRayleigh-number curves. In  particular the location of the 
transition, as the wavenumber varies, between subcritical solutions and supercritical 
solutions can be found (figure 6). Note the unreasonable disappearance of the 
transition for h > 1.24, which is linked to the singular behaviour near the critical 
depth of h = 1.6492. For h < 1.2 the transition curve looks eminently reasonable, and 
for small depth we find the transition wavenumber is proportional to h-4, in 
agreement with the prediction of DS (the numerical coefficient is 1 to within a few 
percent). 

The finite-amplitude solutions of the reconstituted equation (5.1) can be partially 
analysed using an analogy with a particle oscillating in a potential well. The analogy 
is not as useful here as in CP and DS because we cannot write down an explicit 
equation for the potential, but it can still give some qualitative information. Writing 
( )' to denote d/dF and ( * ) to denote d/dx, we assume that F satisfies 

Substituting this and its derivatives into the first integral of (5.1), we find that V 
must satisfy the following nonlinear equation : 

(P)2+ V(F)  = 0. (5.8) 

(B ,+B,F+B,P)  V"+(B,+B,F) V'+2B, V-iB, V'V" = 2B2+2B3P, (5.9) 
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FIGURE 6. Transitions in the parameter (a, h)-plane between regions of small-amplitude subcritical 
solutions (indicated by - ) and regions of small-amplitude supercritical solutions (indicated by + ) 
for the second reconstituted equation (5.1). 

where the Bi are defined by (5 .2) .  The pseudoenergy of the ‘particle’ has been fixed 
at zero; that degree of freedom has been absorbed into the two degrees of freedom 
of the second-order differential equation for 8. One of the interesting aspects of this 
potential-well analogy is that  the terms of (5.1) have been clearly grouped by (5.9) 
into the same groups that we found most useful in the physical interpretation of the 
reconstituted equation (see (5 .6 ) ) .  

There is an interesting, exact, particular solution of (5 .9)  ; it is the linear function 

(5.10) 

If equation (4 .2)  of CP with large asymmetry is solved via a potential-well analogy 
then over much of the cell the solution is similarly linear. This linear variation of the 
potential will often appear in the exact solutions of (5 .1)  (see figure 7 ,  which may 
be compared with figure 6 in CP). I n  the region of a linear potential the flow is 
characterized by a linear variation of the horizontal velocity and a uniform 
downwards vertical velocity. 

Another feature of interest (figure 7)  is the exclusion of the convective motion from 
part of the cell. The generation of such a warmed quiescent region is one of the major 
features of both approximations discussed. We expect this feature to  be typical of 
long-horizontal-scale convection in the presence of non-Boussinesq effects (such as 
temperature-dependent or nonlinear material properties). 

The ‘particle in a potential well’ analogy provides the simplest method of 
calculating solutions with zero wavenumber. To satisfy F =  0 the solutions to this 
type of equation with zero wavenumber must necessarily decay to zero at  large x. 
This condition is satisfied if V ( 0 )  = V‘(0) = 0, which in turn provides initial conditions 
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FIQURE 7(a ) - ( e ) .  For caption see next page. 

for the integration of the potential-well equation (5.9) from the origin until V becomes 
zero again a t  some value of F, which immediately gives the amplitude of the motion. 

Using this procedure, the amplitude versus Rayleigh-number curves for arbitrary 
layer depths can be calculated (figure 8). There are several aspects to  notice. For layer 
depths less than about 1 (i.e. for fluid layers that  are entirely unstably stratified) we 
may make a prediction about the maximum extent of the subcriticality. We find 

X 

approximately Rsub/Rco = 1 -0.12h. (5.11) 

For layer depths larger than about 1 no reasonable prediction of the maximum extent 
of the subcrikicality can be made. The limitation again appears to be connected with 
the singular depth h = 1.6492. The approach of these curves to  the vertical closely 
mimics the zero-wavenumber curve in the work by DS. From their analytic formula 
for the shape of their potential well, we can calculate that  the amplitude increases 
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-0.4 -0.3 -0.2 -0.1 0 0.1 

FIQURE 7. The solution of the second reconstituted equation with parameters h = 0.4, a = 1.0, 
A = 0.4 and hence r = 0.0502: (a) the horizontal structure of the temperature perturbation; (b) the 
horizontal structure of the horizontal velocities; (c) the horizontal structure of the vertical 
velocities; (d )  contours of the temperature field with contour interval AT = 0.1; (e) streamlines 
plotted a t  an interval A$ = 0.1. (f) the shape of the ‘potential well’ V(F)  given by the solution 
of (5.9). 
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FIQURE 8. Amplitude versus Rayleigh-number curves of the solutions to the second 
reconstituted equation (5.1) a t  zero wavenumber, for various layer depths h. 
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FIQURE 9. Amplitude versus Rayleigh-number curves of the solutions to the second reconstituted 
equation (5.1) with h = 1.0 at fixed wavenumbers. The curves for a = 1 are terminated at the 
maximum calculable amplitude. 

logarithmically as the Rayleigh number decreases to  its minimum value. Here the 
behaviour is similar except for the occurrence of an amplitude-limiting singularity, 
which is linked to  the vanishing of the effective diffusion coefficient B, + B, F+ B, P. 

The numerical (finite-difference) solution of the evolution equation can be used to 
calculate the amplitude versus Rayleigh-number curves at fixed finite wavenumber 
for any given layer depth. At a layer depth of 1 (figure 9) we observe the transition 
from subcritical solutions to supercritical solutions at a wavenumber of about 1.3. 
The weakly nonlinear results displayed in figure 5 agree well with figure 9 near the 
origin and for small wavenumbers, that  is where the equations are asymptotically 
valid. However, a t  larger amplitude or wavenumbers the reconstituted equation 
appears to  provide much more realistic answers. The approximately linear variation 
of the Rayleigh number with wavenumber a t  fixed amplitude is also found in this 
reconstitution. 

The weakly nonlinear analysis of $4 has shown that, as the amplitude of the 
convection increases, the horizontal scale of effective motion decreases. At small 
amplitudes this effect is also seen in the solutions of (5.9). However, at larger 
amplitudes where the introduced terms become more important we find that the 
horizontal scale becomes approximately constant (figures 10 and 11 a, b). 

At larger amplitudes still (figures 11 c ,  d )  we enter a regime where the results become 
questionable. The striking feature displayed a t  these amplitudes is the development 
and appearance of a secondary cell in the motion. This cell appears when supposedly 
small correction terms, like F, F,, and F,,, in (5.4), begin to dominate the presumed 
main structure in the solution. However, there are several significant points that  
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FIQURE 10. Solutions of the second reconstituted equation (5.1) at a layer depth of h = 0.10, a 
wavenumber of a = 0.5 and at equispaced amplitudes: A = 0.05 ( r  = 0.0003); 1.0 (-0.0150); 0.15 
(0.0299); 0.20 (0.0421); 0.25 (-0.0513). 

indicate that this development of a secondary cell may occur in the exact solutions 
of the full problem. First, the streamlines and the temperature contours both indicate 
that the cell develops. This agreement is non-trivial, as the errors in (5.3) and (5.4) 
should be largely independent, and so the disparity between the two fields (here 
qualitatively small) is an estimate of their error. Secondly, in a similar problem, that 
of flow between concentric cylinders rotating in opposite directions, Jones (1982) 
found that, as the Taylor number (the analogy of the Rayleigh number) increased, 
the solution similarly developed a weak secondary cell. 

At larger amplitudes still a singularity develops in the solution and limits the 
amplitudes that can be calculated. The singularity develops owing to the vanishing 
of the effective diffusion B ,  + B, F +  B,  F2 at a negative value of F (that this is not 
exactly true is because of the nonlinear term V' V" in the potential-well equation (5.9)). 
This vanishing of the effective diffusivity can be avoided by writing the coefficient 
in the rational-function form 

B, B,+ (B t -  B, B,) F 
B,-BB,F , 

which is equivalent to the order of accuracy of the reconstitution. Using this 
alternative form for the diffusion coefficient, we can typically calculate solutions to 
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nearly twice the amplitude. However, there is no qualitative change in the solutions, 
and the detailed differences are not significant. 

We conclude that the form of the reconstituted equation (5.1) is adequate to 
describe much of the structure of the solutions of the full problem near the critical 
Rayleigh number (3.4) and that (5.11) gives a reasonable prediction of the extent of 
subcriticality for layer depths less than 1. The results at layer depths larger than this 
are significantly affected by the non-uniform validity of the leading approximation. 

6. Remarks 
We have looked a t  convection in a fluid possessing a density maximum with the 

heat flux prescribed on the boundary. The assumption of long horizontal scales of 
motion restricts us to considering stably stratified layers that  are relatively shallow, 
thinner than about 66% of the thickness of the unstable layer. Incorporating the 
nonlinear dependence of density with temperature, we have used the technique of 
reconstitution to  derive an evolution equation that is an apt generalization of the 
equations of Chapman & Proctor (1980) and Depassier & Spiegel (1982). Using this 
evolution equation, we have investigated some of the physical processes of the 
finite-amplitude convection. Also we have calculated estimates for the maximum 
extent of the subcriticality a t  which finite-amplitude oonvection may occur ; to  make 
such an estimate we need an evolution equation containing the enhanced shear- 
dispersion term (P,),. 

How can the stable branch of the finite-amplitude solutions be calculated for zero 
wavenumber ? Observe that a fourth-differential-order equation is not capable of 
doing so. For any fourth-order equation we should be able to integrate it once directly 
and use the ‘particle in a potential well ’ analogy to derive a second-order differential 
equation for the potential well ( V ( F )  say). But for a zero-wavenumber solution (in 
a non-strictly-Boussinesq fluid) we must have V ( 0 )  = V‘(0) = 0;  hence for any 
Rayleigh number we oan calculate the unique potential well (which immediately gives 
the amplitude) by integrating away from F = 0. Thus the amplitude is a unique 
function of the Rayleigh number, and we cannot calcul4te the stable zero- 
wavenumber branch of solutions from a fourth-order equation. I conjecture that 

sixth-order equation, such as may be produced by type I1 reconstitution 
(Roberts 1985) is necessary to calculate solutions on the stable branch. 

Interestingly, a sixth-order evolution equation is also necessary to  calculate 
nonlinear solutions up to and around the critical depth of h = 1.6492 (this is the reason 
for the non-uniform validity of the fourth-order evolution equations). By using 
reconstitution to derive a sixth-order equation, the analysis may be able to be 
extended in both these directions. 
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